CRC 1565: Molecular mechanisms and interplay of gene expression processes

While gene expression was traditionally viewed as a linear pathway of consecutive steps, we now know that genome organization and transcription, RNA processing and modification, RNA-protein complex assembly, translation and quality control are highly interconnected processes. Many cross-regulation events occur even between non-consecutive steps of gene expression, and even between processes taking place in different cellular compartments.

This paradigm shift is of central importance for understanding the dynamic regulation of gene expression in various cellular conditions and its dysregulation in diseases.

Key mechanistic and regulatory aspects of gene expression still remain unexplored, and knowledge on the extent and mechanisms of cross-regulation between different processes is still in its infancy.

With this Collaborative Research Centre (SFB1565), we aim to resolve structures and functions of key events in the pathway that have remained enigmatic, but also decipher how different processes are coordinated in space and time, and in different gene expression systems.

Structural views of gene expression machineries and structure-informed functional analyses will pioneer new mechanistic insights and systematic mapping of DNA-/RNA-protein interactions will reveal pivotal interconnections.

Establishing an integrated view of the molecular principles and dynamics of gene expression and the network of cross-regulation will shape our understanding of this important cellular pathway and also of its modulation in different cellular conditions.

Understanding regulatory mechanisms in different gene expression systems will allow principles of regulation and interconnections to be dissected. Tackling these ambitious goals requires the concerted efforts of leading experts in each aspect of gene expression and can therefore only be approached in the context of a Collaborative Research Centre such as SFB1565.

This research initiative holds the promise to provide an unprecedented view of gene expression as a defining network of interconnected cellular processes and thereby also to pave the way for the elucidation of the molecular basis of diseases.

Programme: This Project is not associated with a Programme


Public web page:

Organisms: No Organisms specified

FAIRDOM PALs: No PALs for this Project

Project created: 12th Dec 2023

help Tags

This item has not yet been tagged.

Powered by
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH